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1. Introduction

Due to the driving forces of the Internet and network communicaimblogy, the paradigm of
Geographic Information Systems (GIS) is shifting [16, 19]. Moeeowith the advances in
computer technology and GIS science, distributed GIS become plauiit widely acceptable.
Traditional GIS plays an extremely valuable role in GIS apijitina by providing a wide variety
of tools to handle geo-referenced data. However traditionaldaifdot be applied directly in
distributed and heterogeneous computing environments due to their ebdedentralized
architectures.

To hide the heterogeneity and to accommodate distributed en@ngnopen, component-based
GIS are replacing the old traditional monolithic GIS [2, 6, 9]. WrHe open, component-based
architecture, distributed data and functionality can be integrand cooperate with each other
and at the same time it minimize the risk of developing m®noliths. Furthermore, by applying
component-based software development (CSBD) approaches, componetits caused and
composed in many applications. Component technologies, such as theoGd@iwect Request
Broker Architecture (CORBA), Distributed Component Object Mo@@@COM), and Java
Remote Method Invocation (RMI), are playing major roles in tlastuction of open,
component-based architectures.

While many component-based GISs have been developed from scratcis thee=d to develop
a component-based GIS based on existing code rather than developpnergcfatch. For

instance, constructing systems from GIS commercial offtletf-§COTS) products have been
conducted [20]. The advantages of using previously-existingmsgsége numerous including
tested reliability, approved features, and an opportunityexpanding system capabilities [20].
So, building a component-based GIS from an existing traditional S54Sésearch problem that
we are trying to address.

This paper introduces an approach to transform a traditional @RASS, into a component-
based GIS under CORBA environment. Section 2 first introduces compuasad- software
development and CORBA. In Section 3 we describe the layeredeatang and related methods
and technologies used to transform GRASS into a component-ESedA case study that
integrates the GIS components is presented and evaluatedtionS4. Section 5 presents the
conclusions and our contributions.
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2. Background

This section presents related background knowledge. Section 2.1 imsodoimponent-based
software development. CORBA is briefly introduced in Section 2.2.

2.1 Component-based Softwar e Development

A software component is a self-contained unit which can be indepdy deployed and is
subject to composition by third parties [18]. Software componentst ddejures of object-
oriented programming including encapsulation, polymorphism, inheritatgect-binding, and
object relationships such as specialization, collaboration and compo#ition [

CSBD allows systems to be developed from a number of existingaseftcomponents with
exposed interfaces and hidden implementations. Thus, a system dewneb@ped by selecting,
reconfiguring and assembling encapsulated, reusable, interopenafglgéesting software
components [1]. The major benefits of component-based software developohad shortened
development cycles, increasing productivity, and higher quality sys®®ms [

Currently there are three major component technologies uskd itevelopment of component-
based applications. They are CORBA specification developedeb@bject Management Group
(OMG), DCOM developed by Microsoft Corporation and Java RMI devedlobg Sun
Microsystem Inc. These component technologies have been widelptea by the GIS
community. For example, OpenGIS Consortium (OGC) issued the Skeptare (SF) [13] and
Grid/Coverage (GC) [12] geospatial data implementation spatidins for CORBA and DCOM,
which can be used as the standard geospatial data representaf@@BRBA, DCOM, or Java
RMI environments. Environmental Systems Research Instit(&3&I) ArcGIS 8.3 and higher
were developed for the DCOM environment [4].

2.2 Introduction to CORBA

CORBA is a well-accepted, mainstream component technology. It tanggisablems associated
with heterogeneity in distributed computing environments. Such heteitygesecommon
because platform-dependent computing technology changes over.iméhesoperating systems
and the network technology. CORBA, as a platform-independent compuaiodel and
abstraction, can not only hide the heterogeneity between differtfiorpts, but also hide the
complexity in the low-level network communication. It providedamdardized interface model
and object framework for solving network computing problems in @iltlised heterogeneous
environment.

The CORBA architecture consists of four main parts: Obdraxjuest Broker (ORB), Common
Object Services, Common Facilities, and Application Objecteriiss to CORBA’s architecture
is the ORB. The ORB is responsible for distributing objelis teetween clients and servers. The
object calls can be either static or dynamic. Figure 1tifitess the role of the ORB. The protocol
for client/server interaction is defined through a singl@lémentation language-independent
specification, Interface Definition Language (IDL). The purpo$ethe IDL is to allow the
definition of the object interfaces to be independent of any partiptdgramming languages and
provide operating-system-independent interfaces to the searidesomponents which reside on
a CORBA bus.
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Figure 1: The structure of object request interfaces [14].

Many of today’'s GIS applications in distributed environments cobridfiscomponents from
different knowledge-domains which are both technically and semiyticgerogeneous. Such
heterogeneity can be overcome by using CORBA.

3. Architecture and M ethods

We propose a layered architecture and methods with which poc@mt-based distributed GIS
can be built using a traditional GIS such as GRASS. The tramsfion of GRASS from a
traditional GIS into a component-based distributed GIS is basedhe proposed layered
architecture which is introduced in Section 3.1, and achievedniogpsulating the GRASS
commands in a shared C library called GRASSLIib which is desciib8ection 3.2. Section 3.3
describes elements of the component-based GIS. Some impleoenteliited issues are
presented in Section 3.4.

3.1 Architecture

Figure 2 represents the general layered architectureafponent-based GIS. Each layer in this
architecture is independent of its underlying layer giventti@interface of the underlying layer
does not change. For example, following the design rules of layerkiteature [18], objects in
the layer hosting aomponent-based GIS Server access theTraditional GIS Kernel layer
exclusively via theGIS Library layer. Therefore changes to theaditional GIS Kernel will not
require an adaptation of the classes or tools built withiicdimponent-based GIS Server layer.

User Interface

GIS GIS GIS
Applicatior 1 Applicatior 2 || Applicatior n

Component-based GIS Server

GIS Library
Tradilional GIS Kerne

Figure 2: General architecture.
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A Traditional GISKernel layer provides basic spatial data management and processitigrfanc
however it cannot be readily used in a distributed environment.ekample, GRASS is a
command-oriented GIS which cannot directly accommodate distribateguting environments.
The GIS Library layer provides sophisticated geo-processing services basttk amderlying
Traditional GISKernel layer. TheGIS Library essentially wraps the traditional GIS commands or
tools as a library with open APIs. This approach makes dtitraal command-oriented GIS
available in a distributed environment.Gdmponent-based GIS Server is built on top of thésIS
Library. This server provides domain-related geo-processing and maggiviges to the layer
built on top of it. Through this server, the complexity of théitranal GIS is hidden. Different
GIS can be integrated in the system. For example eithet ESGIS or GRASS can be used as
the Traditional GIS Kernel. This server can be implemented as several separate compknents
gain flexibility and efficiency. GIS Applications are built on topthe Component-based GIS
Server. Each application can be implemented as a set of separate comspémal those parts of
the application related to spatial data management and pingesre implemented by the
Component-based GIS Server. Therefore GIS applications are independent of the underlying
traditional GIS.

Figure 3 presents an instance of the general layeredeatcine, which transforms GRASS from
a traditional GIS into a component-based GIS. In Figure 3, GReE®&s as the base of the
layered architecture by providing the basic spatial data managememiagiatianalysis functions.
The GRASS GIS Library is the primary C programming liprarovided by GRASS. It is the
kernel of GRASS. GRASSLIb is a shared C library developed by wrapping GR#&8®ands or
related tools with open APIs. More details of GRASSLib arecrite=d in Section 3.2. The
Component-based GRASS GIS Server is built by utilizing COREAriology and GRASSLIb.
Each component of the server provides GIS Applications with $peagifo-processing and
mapping services which are accomplished using GRASSLib. Thrthelransformation, the
component-based GRASS GIS Server can accommodate distributed ogmgrutironments.
Moreover, the components in the server can be integrated in differeicatippk.

User Interface

GIS GIS GIS
Application1 Application |**| Applicationn

Component-based GRASS GIS Server

GRASSLIib
GRASS GIS Librarie

Figure 3: The architecture of component-based GRASS.
3.2GRASSLIb

GRASSLIb plays a crucial role in transforming GRASS frotraditional GIS into a component-
based GIS. It is developed by wrapping core functions and relatedofoBRASS into a shared
library, which can be linked into components. It converts GRAS®aditional GIS, from its

original command-oriented style into an executable componentefbher GRASS can be
integrated into component-based applications. Thus the core spatiamdasgement and
processing functions of GRASS can be provided to other components tlamodiect-oriented

method in a distributed environment such as CORBA, DCOM, and JAVA RMI.
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Each command of GRASS was implemented by several C progrdfimg dhe functions

provided by GRASS GIS Libraries. To change a GRASS command fotw#éon of GRASSLID,
several important modifications have been made to the origirjrams supporting the
command. The key modifications include:

The main() subroutines are changed to ordinary functions tkataihthe command
line parameters of the GRASS command as parameters pasbgdairclient. An
integer will be returned by the function to indicate whetherekecution is successful.
Figure 4 shows the declaration of the function converted from GRé&&@nmand
s.surf.rst.

DLL_EXPORT int spline_i(char* arg_input, char* argaskmap, char* arg_elev, char*
arg_devi, char* arg_slope, char* arg_aspect, cheg* pcurv, char* arg_tcurv, char*
arg_mcurv, char* arg_treefile, char* arg_overfilg,arg_deriv, int arg_dtens, double
arg_dmin, double arg_fi, int arg_KMAX, int arg_npmuouble arg_zmult, int arg_elattr,
double arg_theta, double arg_scalex, double arg indrarg_smattr, int mapoption );

Figure 4: Declaration of a function in GRASSLIb.

Eliminate the use of global variables and static variaBlese of these variables have
been changed into parameters passed to related functions.hEng wtll be reset to
initial values at the end of each execution.

Free memory occupied by the programs at the end of each executadlnée memory
leaks. Figure 5 shows an example of memory de-allocation arttingss the global
variables in Spline interpolation function. Memory managementmigortant to
transform GRASS commands into shared library. From our experiénis time-
consuming to detect and eliminate the potential memory leak in the GRASSLI
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#define CLEAN_BEFORE_RET \

if (az) G_free_vector(az); az = NULL; \

if (adx) G_free_vector(adx); adx = NULL; \

if (ady) G_free_vector(ady); ady = NULL; \

if (adxx) G_free_vector(adxx); adxx = NULL; \

if (adyy) G_free_vector(adyy); adyy = NULL; \

if (adxy) G_free_vector(adxy); adxy = NULL; \

if (functions) free(functions); functions = NUL \
if (info->root->data->points){ free(info->roctdata->points); printf("free data->points\n"); }§

if (info->root->data) { free(info->root->datanfo->root->data = NULL; printf("free data \n");}\
if (info->root) free(info->root); info->root NULL; \

if (info) free(info); info = NULL,; \

if (zero_array_cell) free(zero_array_cell);@earray_cell = NULL; \

if (bitmask) BM_destroy(bitmask); bitmask = NLJ \

if (fddevi) fclose(fddevi); fddevi = NULL; \

if (elev) fclose(Tmp_fd_z); Tmp_fd_z = NULL;\

if (slope) fclose(Tmp_fd_dx); Tmp_fd_dx = NULL;

if (aspect) fclose(Tmp_fd_dy); Tmp_fd_dy = NULL

if (pcurv) fclose(Tmp_fd_xx); Tmp_fd_xx = NULL;\

if (tcurv) fclose(Tmp_fd_yy); Tmp_fd_yy = NULL; \

if (mcurv) fclose(Tmp_fd_xy); Tmp_fd_xy = NULL; \

if (Tmp_file_z) free(Tmp_file_z); Tmp_file_zNULL; \
if (Tmp_file_dx) free(Tmp_file_dx); Tmp_file_dx NULL;
if (Tmp_file_dy) free(Tmp_file_dy); Tmp_file_dy NULL;
if (Tmp_file_xx) free(Tmp_file_xx); Tmp_file_xx NULL,;
if (Tmp_file_yy) free(Tmp_file_yy); Tmp_file_yy NULL;
if (Tmp_file_xy) free(Tmp_file_xy); Tmp_file_xy NULL;

—— — - —

Currently there are seventeen GRASS commands from sjpédigdolation to geospatial output
that can be called directly from the GRASSLib. The API of @®ASSLib can be found on the
project website [11]. More commands can be added to GRASSLib amdposed to other

Figure 5: Example code of memory de-allocation.

components.

3.3 Components of the Component-based GRASS GI S Server

The Component-based GRASS GIS Server is built on top of GRASSLjrovides geo-
processing and mapping services to the layer built on top dFhitbugh this server, the
complexity of the traditional GIS is transparent to GIS aagilbns. As illustrated in Figure 6,
currently the component-based GRASS GIS server is comprised e&f domponents. The
SpatialSupportObject provides some basic spatial operatiamsh sas interpolation,
reclassification, and spatial data conversion. The SpatialDpgeiOls responsible for listing
available spatial data and metadata of the spatial ddtee idatasets and retrieving spatial data
from the dataset. The SpatiallnfoObject supplies clients mipping tools. These tools can be

used to transform spatial data into a pdf, png or gif file.




7  Xueming Wu, Shifeng Zhang, Steve Goddard
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Figure 6: Components of GRASS GIS Servers.

These components are implemented as CORBA objects. The iat@ffasach component is
defined using IDL. Figure 7 presents the IDL definition of the &fiaditaObject while Figure 8
gives its C++ class definition in OmniORB environment. Through, IBle interface of each
component is exposed to the client application that requests the servieethe implementation
of the component is hidden. This is one of the benefits provided by component te@solog

interface SpatialDataObject {

BinaryLayer getSite(in BaseMap areatring siteName, in DataFormat
destination) raises (SpatialOperationExceptionalidi?arameterException,
MapFormatNotAvailableException);

BinaryLayer getVector(in BaseMaparin OverlayType type, in
MapResolution resolution, in DataFormat destingtiamses (SpatialOperationException,
InvalidParameterException, MapFormatNotAvailable&pdion);

BinaryLayer getRaster(in BaseMagmain OverlayType type, iMapResolution
resolution, in DataFormat destination) raises (@ff@aperationException,
InvalidParameterException, MapFormatNotAvailable&piion);

LayerHeaderSeq listSite(in BaseMap area) raiseati@@@perationException,
InvalidParameterException);

LayerHeaderSeq listVector(in BaspMeea) raises (SpatialOperationExceptio
InvalidParameterException);

LayerHeaderSeq listRaster(in Bagekli@a) raises (SpatialOperationExceptio
InvalidParameterException);

%

>

=)

Figure 7: IDL Interface of SpatialDataObject.
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class SpatialDataObject_i: public POA_SpatialLagpatialDataObject,
public PortableServer::RefCountServantBase {
private:

PortableServer::POA* mypoa;

char config_file[512];

omni_mutex grass_mutex;

public:

SpatialDataObject_i(const char*figfile, PortableServer::POA *p);

virtual ~SpatialDataObject_i();

BinaryLayer* getSite(const BaseMap&a, const char* siteName, const DataFormat&
destination) throw (SpatialOperationException didParameterException,
MapFormatNotAvailableException);

BinaryLayer* getVector(const BasgMaarea, OverlayType type, const MapResolution&|
resolution, const DataFormaté& destination) thro8pdtialOperationException,
InvalidParameterException, MapFormatNotAvailableg&ption);

BinaryLayer* getRaster(const Basp®larea, OverlayType type, const MapResolution&
resolution, const DataFormaté& destination) thro8pdtialOperationException,
InvalidParameterException, MapFormatNotAvailable&ption);

LayerHeaderSeq* listSite(const B4asp& area)

throw (SpatialOperationException, InvalidParamexedption);
LayerHeaderSeq* listVector(const8dap& area)

throw (SpatialOperationException, InvalidParamexedption);
LayerHeaderSeq* listRaster(congébdap& area)

throw (SpatialOperationException, InvalidParamexedption);
void destroy();

Figure 8: Class definition of SpatialDataObject.
3.4 Implementation I ssues

GRASS is a complex system. Only wrapping the GRASS commarala stared library is not
enough to apply them to a component environment. This section introduce=ldted
technologies used to transform GRASS into a component-based G4S.s8ection 3.4.1
presents the management of GRASS mapsets in component environment. Section 3giBecove
mechanism used in projection transformation. The data formats seghpmyr the component-
based GIS server are described in Section 3.4.3. Section 3.4.Ahsxpasynchronization issue.
The component communication mechanism is presented in Section 3.4.5.

3.4.1 Management of M apsets

All the GRASS programs and tools must be executed in a m&eiehgs of a mapset such as
projection, region, and mask will affect the result of the exacutWhen a service provided by
the Component-based GRASS GIS Server is requested, a threpawined by the server to
handle the request. The thread needs a mapset and that thleasewile mapset exclusively.
Our approach to assign and release mapsets is based to the approach RE&2ShINKS [8].

Besides the PERMANENT mapset, a number of mapsets arectiaatach LOCATION. These

mapsets serve as working mapsets for any thread spawrkd 8pmponent-based GRASS GIS
Server. We use a lock mechanism to prevent a mapset fromussdgoy more than one thread
at the same time. An empty file called UNLOCK is gerestavhile a mapset is created. Right
before the calling of a function of GRASSLIb in the thread,sd#er will check the mapsets in
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the current LOCATION cyclically. The first mapset foundwé UNLOCK file will be assigned
to the thread and becomes the current working mapset fonrgeedt Once a mapset is assigned
to a thread, file UNLOCK will be renamed to LOCK to indicttat the mapset is in use. Before
renaming UNLOCK to LOCK, the server will check if a fitalled LOCK already exists. If file
LOCK exists, that means the mapset is in use. The serllezontinue checking other mapsets.
After the execution of the thread, that file will be renamed&th OCK again. Then that mapset
can be available to any other thread.

Once a mapset is assigned to a thread, the attributes ofapset such as region and mask will
be set up according to parameters passed to the function by the clienttifige sélt impact the
results of the invoked method.

3.4.2 Location Management and Pr oj ection transfor mation

Projection transformation is an important and necessary fuatitionf a GIS. The Component-
based GRASS GIS Server also supports this functionality.s€heer uses two approaches to
conduct projection transformation. These two approaches are keiterpthod and an implicit
method. The explicit method transforms the coordinates from en givojection to a required
projection by directly processing the coordinates based on theraAted by the GRASS GIS
library. The explicit method is applied to the client inputapaeters that required projection
transformation. These parameters usually only contain a few paioefinates.

The implicit method performs projection transformation using thengetf GRASS LOCATION.
The LOCATION is one part of thdiierarchy of the GRASS database structure. The
LOCATION is actually a directory in a UNIX file systenAnd mapsets are sub-
directories of a certain LOCATION in a UNIX file system GRASS each LOCATION
has a certain projection setting. All the mapsets that betonige same LOCATION share the
same projection setting. The implicit method conducts the tranafieimby setting a mapset
belonging to a LOCATION with required projection as the airsgorking mapset. Before the
server assigns an available mapset to a thread, the sesvelefermines which LOCATION to
choose as the current LOCATION. Then the server will asaigavailable mapset of that chosen
LOCATION to the requested thread.

The implicit approach is applied to the output of the server, wiigi be a raster or a vector.
This approach has no computing overhead compared to the explicibeppiitherefore the

Component-based GRASS GIS Server can gain performance. Howatennpace comes at a
price of disk space and possibility of data inconsistenciessd@iwer creates one LOCATION for
each projection that it supports. And a copy of the base mape idefined projection will be

stored in each LOCATION.

3.4.3 Data Formats

The Component-based GRASS GIS Server adopts the GRASS spadiahodel and uses the
GRASS data format as its native format. However, to prahenComponent-based GRASS GIS
Server from being closed and monolithic, the input and output spatialthe server uses the
standard ASCII-based vector and raster formats thaswgrported in many GIS software. The
Component-based GRASS GIS Server also provides functions torrpedata conversion

between the GRASS data format and other formats suchRisdB8pe files, Acrobat pdf, jpeg
and gif files. Since pdf, jpeg and gif files can be viewedugh ordinary web browsers, the
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Component-based GRASS GIS Server can be used in a web GIS tapplidaich is developed
and deployed in a distributed environment such as CORBA, DCOM, and JAVA RMI.

3.4.4 Synchronisation

GRASS is a traditional command-oriented style GIS. Thezesame shared resources used in
GRASS such as environment variables and the .grassrc5 file. Ehbhawe to provide a method
for protecting the shared resources used in GRASS when wedotran&RASS into a
component-based GIS that support multithreads. We use class ommi tonstdve this problem.

A variable of type omni_mutex is defined in the implementationachecomponent (shown in
Figure 8). A class omni_mutex provides two operations, lock() andck{ Wherever a
GRASSLIb function is called, the function is placed betweeaiaof lock() and unlock() calls.
Hence the shared resources are protected in a consistent manner thrthegbgstem.

3.4.5 Communication M echanism

The inter-object and intra-object communication mechanism isqad\wy a CORBA ORB. The
ORSB itself is an object. When a client object requests aadedn a server object, it goes to the
ORB. The ORB then invokes the method on behalf of the clie.ORB takes care of all the
tedious tasks of locating the server object, establishing a connectionnoe& method, getting
the result, and closing the communication session. The CORBArnga®eirvice is used to locate
objects by name.

4. An Example: National Agriculture Decision Support System

The National Agricultural Decision Support System (NADSS iweb-based Spatial Decision
Support System (SDSS) [5]. It provides geospatial relatedimale form of climate data (e.g.,
temperature and precipitation) for agricultural models, informationdridrm of drought indices,
and knowledge in the form of exposure analysis (e.g., the impachatueal hazard). NADSS
consists of spatial analytical models to use climatic tatgenerate drought maps based on
indices such as the Standard Precipitation Index (SPI) [10] anéalmeer Drought Severity
Index (PDSI) [15].

4.1 Architecture

Figure 9 shows the architecture of NADSS, which is built @m of the Component-based
GRASS GIS Server. NADSS is comprised of a set of indepént@nponents that can be
deployed on several computers. NADSS utilizes CORBA for Gl&giructure and Enterprise
Java Beans (EJB) for application distribution [3]. Therefol&DSS can accommodate a
heterogeneous distributed computing environment. By assembling thgo@ent-based GRASS
GIS Server in the system, the complexity of traditional GRAS®&ansparent to application
components and interface components.
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Figure 9: Architecture of NADSS.

Figure 10 demonstrates the generation a PDSI map of a sedeeteih Nebraska in NADSS. In
Step 1, the client sent a request to the PDSI Server thtbadDRB. The PDSI Server calculated
the PDSI for the selected area and returned the PDSI informtatthe client via the ORB. Then
in Step 2, the client passed the PDSI information and a requestfap to the Component-based
GRASS GIS Server via the ORB. The Component-based GRASSS&W\&r conducted an
interpolation using the PDSI information, generated a PDSI arap converted the map to the
required format such as pdf, png or gif. Then the servemeduthe generated map to the client
through the ORB.
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Figure 10: Generation of a PDSI map.

4.2 Performance Evaluation

To transform a traditional GIS in a distributed environmentecdand the usage of the traditional
GIS. However, the transformation may impact the performandkbeo$ystem. We evaluate the
performance of our implementation and present the results.

To evaluate the performance of the component-based GRASS dBl&r smplemented in
NADSS, we compared interpolation functions from the serveraa@dprogram which called the
interpolation command of GRASS (s.surf.rst was used in thki&ion) through a system call.
These two interpolations used the same input data, same intempotathod and parameters.
The component-based GRASS GIS server first retrieved inputtdatacalled the interpolation
function of GRASSLIib, and called the raster conversion funciioBRASSLib to convert the
interpolation result into ASClI-raster format. Finally th&8@ll raster was sent to the client using
the CORBA IIOP protocol. The C program first called therpatation command of GRASS,
which read the input data from a GRASS site file, then calledaster conversion command of
GRASS (r.in.ascii was used) to convert the interpolation result in@ A& mat.
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This evaluation was designed to estimate the computation odedaesed by wrapping the
GRASS commands with component technology. However, there exists cocatimn overhead
between the client and the component-based GRASS GIS server.nifoizaithe impact of
transferring raster data from the component-based GRASSeBI& o client, the server and the
client were deployed on the same computer in the evaluation.

We tested the average processing time in seconds fodiffeirent spatial resolutions (3000m
[low resolution], 1000m, 500m, 200m [high resolution]). The differesbligions affect the
interpolation result size and consequently the raster d&tdtbe greater the resolution, the larger
the raster data size).

Table 1 presents the average call times and standardoéicall times from the test samples of
the server and the C program at each resolution. The avehtimes are plotted in Figure 11 to
provide a visual comparison of their performance. From the results, we foutigdetitamponent-
base GRASS GIS server was a little slower than theo@@m, which called GRASS commands
directly. The performance impact comes from the communicatiorheae of the CORBA
components. Nevertheless, the performance impact is acceptabl¢h@ component-based
GRASS GIS server can accommodate distributed computing environments.

Component-based GRASS C program
GIS server (GRASS command)
mean standard error mean standard error
3000x3000m 0.885201 0.019641 0.855673 0.002863
1000x1000m 6.920380 0.117729 6.464280 0.047110
500x500m 27.098860 0.189585 25.248723 0.090016
200x200m 167.303000 0.665325 158.480230 2.793640

Table 1: The mean call time in seconds and the standard error of call times

from the test samples for the Component-based GRASS GIS server and GRASS

commands.
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Figure 11: Performance evaluation.
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5. Conclusion

An approach to transform GRASS, a traditional GIS, into a component-basaeé@s has been
presented and an example of integrating the component-based GiISrser@&)SS is given. We
showed that this approach is useful and practical by applying comptewmiology to a
traditional GIS to achieve accommodation of distributed computing envirdeame

First, we introduced a layered architecture that uses compdaehnology to construct a
component-based GIS server from a traditional command-oriented Gi2sUBRASS. A layer
in the layered architecture is independent of its underlydggr| given that the interface of the
underlying layer does not change.

Second, we presented our work on GRASSLIb, which wraps core funatioht®ols of GRASS
with component technology into a shared library. It converts GRASS its original command-
oriented style into an executable component which can be lioketthér components through an
object-oriented method in a distributed environment.

Third, we described the implementation of a component-based GRASServer built on top of
GRASSLIib. Each component of the server is a CORBA object thatidesovspecific
geoprocessing and mapping service to GIS application components.n$afinods related to the
management of GRASS mapsets and locations were also covered in this paper.

We used NADSS, a SDSS, as a case study to demonstrate thatagppttthe component-based
GRASS GIS server. We also presented a performance evaluation of riq@desgarver.

Traditional GIS software, like GRASS, are command-oriented, ardaily unsuitable for use in
a component-based distributed computing environment. This limitatiopréasnted their broad
usage in today’s distributed GIS applications. The transfoomatpproach can be applied to
similar traditional GIS whose core functions and tools can be wrappegisisred libraries.
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